Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Hum Genet ; 140(6): 969-979, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1092066

ABSTRACT

SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We, therefore, used an integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayesian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait loci (eQTLs) from the Lung eQTL (n = 1,038) and eQTLGen (n = 31,784) studies with published COVID-19 genome-wide association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n = 3,301) with COVID-19 loci. Finally, we determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian randomization (MR). The expression of 18 genes in lung and/or blood co-localized with COVID-19 loci. Of these, 12 genes were in suggestive loci (PGWAS < 5 × 10-05). LZTFL1, SLC6A20, ABO, IL10RB and IFNAR2 and OAS1 had been previously associated with a heightened risk of COVID-19 (PGWAS < 5 × 10-08). We identified a causal association between OAS1 and COVID-19 GWAS. Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal relationship with COVID-19 in the MR analysis; increased plasma levels were associated with an increased risk of COVID-19 and, in particular, severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be prioritized for future investigations. Importantly, this is the first study to demonstrate a causal association between plasma ABO protein and COVID-19.


Subject(s)
Blood Proteins/metabolism , COVID-19/epidemiology , Genetic Predisposition to Disease , Lung/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , SARS-CoV-2/isolation & purification , ABO Blood-Group System/metabolism , COVID-19/metabolism , COVID-19/virology , Cohort Studies , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Risk Factors
2.
Sci Rep ; 10(1): 21863, 2020 12 14.
Article in English | MEDLINE | ID: covidwho-977274

ABSTRACT

Cell entry of SARS-CoV-2, the novel coronavirus causing COVID-19, is facilitated by host cell angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We aimed to identify and characterize genes that are co-expressed with ACE2 and TMPRSS2, and to further explore their biological functions and potential as druggable targets. Using the gene expression profiles of 1,038 lung tissue samples, we performed a weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. We explored the biology of co-expressed genes using bioinformatics databases, and identified known drug-gene interactions. ACE2 was in a module of 681 co-expressed genes; 10 genes with moderate-high correlation with ACE2 (r > 0.3, FDR < 0.05) had known interactions with existing drug compounds. TMPRSS2 was in a module of 1,086 co-expressed genes; 31 of these genes were enriched in the gene ontology biologic process 'receptor-mediated endocytosis', and 52 TMPRSS2-correlated genes had known interactions with drug compounds. Dozens of genes are co-expressed with ACE2 and TMPRSS2, many of which have plausible links to COVID-19 pathophysiology. Many of the co-expressed genes are potentially targetable with existing drugs, which may accelerate the development of COVID-19 therapeutics.


Subject(s)
COVID-19/metabolism , Lung/metabolism , Receptors, Coronavirus/metabolism , Transcriptome , Adult , Aged , Angiotensin-Converting Enzyme 2/metabolism , Cohort Studies , Databases, Chemical , Female , Humans , Lung/pathology , Male , Middle Aged , Serine Endopeptidases/metabolism
3.
Rev Med Virol ; 31(4): e2193, 2021 07.
Article in English | MEDLINE | ID: covidwho-938540

ABSTRACT

Human rhinoviruses (RVs) are the primary aetiological agent of the common cold. Generally, the associated infection is mild and self-limiting, but may also be associated with bronchiolitis in infants, pneumonia in the immunocompromised and exacerbation in patients with pulmonary conditions such as asthma or chronic obstructive pulmonary disease. Viral infection accounts for as many as two thirds of asthma exacerbations in children and more than half in adults. Allergy and asthma are major risk factors for more frequent and severe RV-related illnesses. The prevalence of RV-induced wheezing will likely continue to increase given that asthma affects a significant proportion of the population, with allergic asthma accounting for the majority. Several new respiratory viruses and their subgroups have been discovered, with various degrees of relevance. This review will focus on RV infection in the context of the epidemiologic evidence, genetic variability, pathobiology, clinical studies in the context of asthma, differences with other viruses including COVID-19 and current treatment interventions.


Subject(s)
Asthma/etiology , Picornaviridae Infections/complications , Rhinovirus , Asthma/virology , Common Cold/complications , Common Cold/virology , Genetic Variation , Humans , Picornaviridae Infections/virology , Rhinovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL